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Using Linkage Genome Scans to Improve Power of Association
in Genome Scans
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Scanning the genome for association between markers and complex diseases typically requires testing hundreds of
thousands of genetic polymorphisms. Testing such a large number of hypotheses exacerbates the trade-off between
power to detect meaningful associations and the chance of making false discoveries. Even before the full genome
is scanned, investigators often favor certain regions on the basis of the results of prior investigations, such as
previous linkage scans. The remaining regions of the genome are investigated simultaneously because genotyping
is relatively inexpensive compared with the cost of recruiting participants for a genetic study and because prior
evidence is rarely sufficient to rule out these regions as harboring genes with variation of conferring liability (liability
genes). However, the multiple testing inherent in broad genomic searches diminishes power to detect association,
even for genes falling in regions of the genome favored a priori. Multiple testing problems of this nature are well
suited for application of the false-discovery rate (FDR) principle, which can improve power. To enhance power
further, a new FDR approach is proposed that involves weighting the hypotheses on the basis of prior data. We
present a method for using linkage data to weight the association P values. Our investigations reveal that if the
linkage study is informative, the procedure improves power considerably. Remarkably, the loss in power is small,
even when the linkage study is uninformative. For a class of genetic models, we calculate the sample size required
to obtain useful prior information from a linkage study. This inquiry reveals that, among genetic models that are
seemingly equal in genetic information, some are much more promising than others for this mode of analysis.
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Methods to detect liability alleles for complex disease are
at a crossroads. Previously, tests of association between
disease status and alleles at specific markers targeted sev-
eral markers within a handful of candidate genes. With
the advent of relatively inexpensive molecular methods
for genotyping, the trend is moving toward whole-genome
association studies (Thomas et al. 2005). Such investi-
gations might involve hundreds of thousands of markers
and hypothesis tests. Current analytical tools for such
massive investigations are limited. The ultimate success
of whole-genome association studies will depend largely
on the development of innovative analytic strategies.

Although the whole genome might be tested for asso-
ciation with the disorder of interest, typically, some re-
gions of the genome are favored because of prior inves-
tigations or knowledge of the biological function of par-
ticular genes. Other regions are investigated simultane-
ously because genotyping is relatively inexpensive com-
pared with the cost of recruiting study participants and
the cost of designing large-scale study-specific assays.
Moreover, for complex phenotypes, few regions can be
excluded as not harboring liability genes.

For any well-calibrated statistical procedure, simulta-
neously looking for association across the whole genome
leads to a loss in power to detect signals in a specified list

of genes. Some statistical approaches, however, are better
suited to large-scale testing than others. For instance, if
we aim to control the false-discovery rate (FDR), defined
as “the expected fraction of false rejections,” the loss in
power will be less than if we aim to control the type I
error rate (Genovese and Wasserman 2002; Benjamini
and Hochberg 1995). For this reason, FDR procedures
are widely used in multiple-testing problems that arise
in genetic studies (Efron and Tibshirani 2002; Devlin et
al. 2003a, 2003b; Sabatti et al. 2003; Storey and Tib-
shirani 2003).

To enhance the power to detect association in favored
regions while simultaneously testing the whole genome,
we considered an FDR procedure that facilitates weight-
ing hypotheses on the basis of prior information (Geno-
vese et al. [in press]; see also Benjamini and Hochberg
[1997]). Specifically, our goal was to increase the power
to detect signals for association in preselected regions by
judiciously “up-weighting” the relevant P values while
“down-weighting” P values in all other regions. Linkage
data offer a natural choice for weighting the P values for
a whole-genome association study. In the present study,
we investigated how linkage traces can be formulated as
weights. If some of the loci under linkage peaks are in-
deed more likely to be associated with the phenotype than
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Figure 1 Achieved power of a single test for a variety of binary
weighting schemes. Within each bar plot, the left (right) bar reveals
the power if the value is up-weighted (down-weighted). The plot dis-
plays the deviation in power of the weighted test from the marginal
unweighted power (0.5). Rows, from top to bottom, are , 6,B p 2
and 50; columns. from left to right, are , 0.01, and 0.1.e p 0.001

the others, then the weighted procedure offers a chance
to maintain good power even in a whole-genome asso-
ciation study. Remarkably, we will show that if the link-
age trace is informative, then power is enhanced; yet,
with uninformative linkage traces, the procedure expe-
riences a fairly small loss in power. We also provide guid-
ance on the type of genetic models and required sample
sizes likely to yield informative weights. Although we fo-
cused our investigation on weighted FDR procedures,
these ideas can be easily applied to other multiple-testing
procedures, such as Bonferroni and Holm’s procedure
(Holm 1979).

Methods

The proposed multiple-testing situation consists of m hypoth-
eses , for which if the ith null hypothesis isH ,…,H H p 11 m i

false, and 0 otherwise. The evidence corresponding to the ith
test for association is summarized in the P value . The orderedPi

P values are indicated as , with defined to…P � P � P P(1) (2) (n) (0)

be 0 for convenience.
Many FDR-based procedures are based on the following

pattern: reject each hypothesis for which is less than or equalPi

to a threshold T that is selected on the basis of the observed
P values so as to maintain FDR at level a. The FDR at thresh-
old T is defined to be the expectation of

m� I(P ≤ T)(1 � H )i ino. of false rejections ip1p ,mno. of rejections � I(P ≤ T)i
ip1

where the ratio is defined to be 0 when the denominator is 0.
The most common procedure for choosing T is that of Ben-
jamini and Hochberg (1995) and is given by

ai
T p max P :P � .(i) (i){ }m

Let be the chosen weights. Following the argumentw ,…,w1 m

for the Benjamini and Hochberg (1995) FDR procedure, the
“wBH” procedure of Genovese et al. (in press) finds the thresh-
old for rejection (T) that controls the FDR at rate a when the
weighted values play the role of the P values. In practice,{P /w }i i

the weights adjust the threshold for rejection individually for
each P value, in that we reject the ith hypothesis if .P � wTi i

To illustrate the effect of weights, we present a theoretical
exploration of the power of weighted tests that would have had
50% power in the absence of weighting. Tests with considerably
more power will not benefit substantially from weighting, and
tests with less power are not likely to be powerful even with
weights. We call these 50%-power alternatives “marginal” be-
cause they are on the margin of detectability. In this context,
power is defined as the probability that .P /w � Ti i

To maintain FDR at a fixed level, a set of prior weights
must satisfy two criteria: and{w } w � 0i i

m1—w { w p 1�m iip1m

(Genovese et al., in press). Thus, candidates for linkage-based
weights are numerous. For simplicity of exposition, we initially
consider binary weights with a fraction e of weights w {1

—that is, up-weighted—and the remainderB/(Be � 1 � e)
down-weighted. In figure 1, we comparew { 1/(Be � 1 � e)0

the achieved power over a grid of choices for the two free
parameters, and . Withine p (0.001,0.01,0.1) B p (2,6,50)
each bar plot, the left (right) bar reveals the power if the value
is up-weighted (down-weighted). Thus, the bars show the de-
viation from the marginal unweighted power (0.5) and the
contrast in power if a test is correctly up-weighted or incor-
rectly down-weighted. For a given e, the power gain for the
up-weighted tests increases as B increases. Meanwhile, the
down-weighted tests lose increasingly more power as B in-
creases; however, the loss is disproportionately smaller than
the gain attained by the up-weighted tests. The potential gains
are more striking if e is small, whereas the potential losses are
greater if e is large. In effect, as e increases, constraining the
average weight to be 1 results in more-modest up-weights and
more-severe down-weights. This reduces the power to detect a
given signal, regardless of whether it is up- or down-weighted.
This analysis reveals that sparse, dramatic weights can yield
large increases in power with very little potential loss. There
is a catch, though. This striking improvement in power is at-
tainable only if the weights are correctly placed. With small
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Figure 2 Extra discoveries as a function of the quality of the
bets. The scenario investigated has tests, and a fractionm p 10,000
( ) of them are nonnull. The quality of the bets, measured ina p 0.1
terms of h, varies between 0 and 20. We consider four choices of e:
0.01 (short-dashed line), 0.1 (dotted line), 0.2 (dot-dashed line), and
0.4 (long-dashed line).

e, it is much more challenging to place the weights correctly.
A causal variant is more likely to be up-weighted if e is larger.

Next, we considered the effect of weights on the number of
discoveries made. Consider a situation in which for aH p 1
fraction of the tests, and use the binary weights de-0 ! a ! 1
scribed above. It is convenient for this analysis to treat the
weights as random variables. A measure of the informativeness
of the betting is

Pr(W p w dH p 1)1
h p .

Pr(W p w dH p 0)1

When , W and H are independent; for , there ish p 1 h 1 1
greater likelihood of betting correctly, and, for , in-0 � h ! 1
correctly. With use of marginal alternatives, half of the tests
with are likely to be discovered. We measure our ge-H p 1
nomewide success rate by counting how many true discoveries
are made in excess of expectation. Figure 2 considers a scenario
in which , , and h varies between 0 andm p 10,000 a p 0.1
20. We consider four choices of . (Fore(0.01,0.1,0.2,0.4) e 1

, h is a bounded quantity). When , the gain in discoveriesa e ! a
is modest regardless of h (short-dashed line). When , thee p a
number of excess discoveries increases smoothly with h (dotted
line). For h close to 1, a choice of leads to more discoveriese 1 a
than obtained when ; however, this advantage is lost ash p a
h increases (dot-dashed line ; long-dashed line ).p 0.2 p 0.4
From this analysis, we conclude that an optimal choice of e is
slightly .� a

For our application, the value of the linkage test at the po-
sition of the ith association test is the basis for the proposedzi

weighting system. For linkage data, the test statistics along a
chromosome can be summarized as a Gaussian process that,
at any point on the chromosome, is approximately normally
distributed. Under the null hypothesis, the distribution has mean
0 and variance 1. Unlike the binary scenario investigated thus
far, the test statistics are strongly correlated within a chromo-
some. Even under the alternative hypothesis, a linkage peak
for a complex disease tends to be broad and ill defined (fig.
3; blue) because of the physical process of recombination. It
is desirable to up-weight the entire region under a linkage peak
to capture the causal variant (or variants). Because linkage
results are quantitative, and because a linkage peak is not a
well-defined region, we consider continuous weights.

We use the following heuristic to motivate our exponential
weighting scheme. Assume the model-free linkage statistics are
distributed normally , with mean when unlinked(b,1) b p 0
and when linked. A natural weighting candidate is theb 1 0
posterior odds that an observation is linked, which is propor-
tional to . Because the weights are constrained to havebziv p ei

mean 1, is a valid choice. Thus, choosing the weights—w p v /vi mi

is tantamount to choosing a constant to play the roleB � 0
of the unknown quantity b.

The exponential weighting scheme with is depictedB p 1
in figure 3 (green). The implicit meaning of e in the binary
weighting scheme is determined automatically by the number
and length of the linkage peaks. If there are many peaks, then
the up-weighting will be constrained more strongly by the re-
quirement that . Increasing B decreases the length of—w p 1m

the peak that is strongly up-weighted. Consequently, whereas

a large value of B will yield greater power in some instances,
it might fail to up-weight a causal variant located away from
the crest of the corresponding linkage peak.

Exponential weights have the disadvantage of being highly
sensitive to large values, a feature that is particularly apparent
in the top panel of figure 3. For this reason we considered
cumulative weights, defined as , where is the stan-f(z � B) f(7)
dard normal cumulative distribution function. This function
has the desirable property of increasing approximately linearly
for values of z near B, but quickly reaching an asymptote for
large values of . Consequently, it gives approximatelyFz � BF
equal up-weighting (down-weighting) to any z value 2 or more
units above (below) B. See figure 3 (red) for a comparison
between the exponential and cumulative weights; forB p 1
the former and for the latter. Cumulative weighting hasB p 2
the advantage of providing smoother up-weights and broader
peaks. Its disadvantage is that it strongly down-weights regions
without linkage signals, perhaps making it an inferior choice
when the linkage input is uninformative because of low power.
This feature is most apparent in the bottom panel of figure 3.

Results

Simulations

To evaluate wBH, we simulate whole-genome linkage
traces (22 autosomes and chromosome X) and corre-
sponding association tests. We simulate linkage traces
that approximate the information obtainable from an
independent 10,000-SNP linkage study. Because of prac-
tical constraints on computation time, we simulate the
linkage traces indirectly. As described by Bacanu (2005),
we approximate linkage traces on chromosomes as in-
dependent realizations of an underlying time series pro-
cess. The linkage trace is constructed by adding random
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Figure 3 Plot of linkage traces for three chromosomes with weights. The green and red traces are weights with exponential ( ) andB p 1
cumulative ( ) weights, respectively, that are based on the linkage trace (blue). The bottom panel has no signal.B p 2

noise to a deterministic model of the linkage signal. The
random noise of a linkage trace is distributed as a Gaus-
sian process from an autoregressive moving average
(ARMA 2,1) model with parameters ,ar p 1.51 ar p1 2

, and (Venables and Ripley 2002).�0.51 ma p 0.221

This model was selected on the basis of features expected
in actual linkage traces (see appendix A for details). To
introduce L linkage signals, the position of the disease
variant is randomly placed on L chromosomes, one sig-
nal per chromosome. Each expected signal is centered
at the designated location, with peak height , whichml

decays smoothly to zero as the distance t from the disease
variant increases. If the autocorrelation pattern deter-
mined by the ARMA model is , then a marker t unitsr(t)
from the disease variant has signal equal to . Chro-r(t)ml

mosomes with no disease variants have signal equal to
zero at all points. The resulting traces resemble the out-
come of a linkage study that relies on sib pairs, analyzed
using a model-free linkage analysis, for a complex ge-
netic disease.

Superimposed on the linkage traces are m p
(250,000) simulated association statistics,500,000

equally spaced in genetic distance. To realistically sim-
ulate a dense set of association data, detailed informa-
tion about the linkage disequilibrium (LD) structure be-

tween SNPs would be required. Such a detailed simu-
lation, however, would be impractical for this investi-
gation. Consequently, we simulated independent asso-
ciation tests. The P values for the noncausal association
statistics are uniformly distributed. Each of the P values
obtained from one of the L disease variants is derived
from a normal test statistic.N(m ,1)a

Our simulations explore various levels of signals that
might be encountered in practice under a wide variety
of genetic models. The intensity of the signal is a statis-
tical parameter, not immediately interpretable via the
genetic model. The quantities and represent the shiftm ml a

in the mean of the linkage and association test statistics,
respectively, between the unlinked and linked hypothe-
ses. The shift is determined by the informativeness of
the genetic model for the designated type of study and
the size of the sample. Theoretically, any desired com-
bination of linkage and association shifts could be at-
tained with appropriate sample sizes in each type of
study. However, for some genetic models, the sample size
required might be immense for a linkage and/or associa-
tion study. Below, we discuss further the connection be-
tween the statistical parameters and the genetic models.

For each of 150 simulation conditions, which corre-
spond to specific levels of and , we generated 100m ml a
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Figure 4 Power as a function of . Power is defined as thema

number of true discoveries of causal variants. Distinct linesL p 10
correspond to different methods and/or linkage signals, coded as fol-
lows (from lowest to highest power): dotted is the Bonferroni method;
dot-dashed is wBH through use of linkage data with no signal (m pl

); solid is the BH method (Storey’s 2002 version); dashed are wBH0
through use of linkage data with a weak ( ), moderate (m p 1 m pl l

), and strong ( ) signal.2.5 m p 3.5l

Table 1

Distribution of Weights at the Causal Variants

ml

EXPONENTIAL CUMULATIVE

Mean Variance Mean Variance

0 1.01 1.73 1.00 2.68
1 2.28 7.65 2.48 5.99
2.5 6.69 64.1 4.71 4.22
3.5 11.8 179 5.07 1.35

linkage traces and 10 replicate association studies per
linkage trace. Consequently, at each level, the perfor-
mance of the inference procedures were estimated from
1,000 simulations. In addition, of associa-m p 500,000
tion tests, disease variants were present. We alsoL p 10
tried and 15 of and 500,000 tests,L p 5 m p 250,000
but the results for those conditions were qualitatively
similar to those for and , so thoseL p 10 m p 500,000
results are not shown.

Simulations displayed in figure 4 show that solid gains
in power are possible with wBH (dashed lines) as com-
pared with BH (solid line) and especially compared with
the traditional Bonferroni correction for multiple testing
(dotted line). For signals arising from weak, moderate,
and strong linkage signals ( , 2.5 and 3.5—dashedm p 1.0l

lines, from lowest to highest, respectively), the increase
in power is steady across the range of association signals
( ). The increase when is encourag-m p 4.0–6.0 m p 1a l

ing. With such a weak signal, the linkage trace is likely
to appear to have no meaningful signals. It is also note-
worthy that moving from good ( ) to excellentm p 2.5l

( ) information does not result in a dramaticm p 3.5l

improvement in power. There appears to be a limit to
how much power can be obtained from linkage-based
weights.

The linkage shift of is intended to approximatem p 0l

a linkage study that has essentially no power because of
insufficient sample size. As noted by Risch and Merikan-
gas (1996), this scenario is certainly plausible. The simu-
lations reveal that a fairly small amount of power is lost
because of weights that are based on an uninformative

linkage study ( ) (fig. 4; dot-dashed line). Even withm p 0l

uninformative weights, the power of wBH is greater than
that obtained using a Bonferroni correction. In the best-
case scenario, increases in power over Bonferroni-cor-
rected tests can be 135%. The wBH results were ob-
tained using exponential weights with . Very sim-B p 1
ilar results were obtained when cumulative weights with

were used. Exponential weights slightly outper-B p 2
formed cumulative weights when .m p 0l

We also investigated other choices of constants for the
weighting schemes. In practice, we found that good
choices for the arbitrary parameters are for ex-B p 1
ponential weighting and for cumulative weight-B p 2
ing, because they provide a substantial gain in power
when the linkage trace is informative and a small loss
in power when the linkage trace is uninformative.

Another interesting feature of the simulations is the
behavior of the linkage signals for individual genome
scans. Although there were loci that could pro-L p 10
duce linkage signals, for any particular simulation, only
a few of those loci were likely to produce a notable linkage
signal, even when . In fact, for a commonlym p 3.5l

accepted bound for significant linkage—a LOD of 3.6
(Lander and Kruglyak 1995) and , 2.5, and 3.5—m p 1.0l

the expected numbers of loci exceeding the threshold are
0.01, 0.6, and 2.8 of 10; for suggestive linkage—re-
quirement of a LOD of 2.2 and , 2.5, and 3.5—m p 1.0l

the expected numbers of loci exceeding the threshold are
0.1, 2.5, and 6.2 of 10. Naturally, when , them p 0.0l

expected number of loci exceeding either bound is es-
sentially 0 of 10.

The size of the weights varies as a function of many
factors, including characteristics of the linkage trace (the
number, width, and height of the peaks), the choice of
weight function, and related parameter B. To provide
insight into to the size of weights in our simulations, we
summarized the mean and variance of the weights de-
rived from the various types of linkage traces evaluated
at the 10 causal variants (table 1). When there was no
notable signal in the linkage data, the weights were ap-
proximately equal to unity, on average, which is a de-
sirable feature. As the linkage signal increased, so did
the weights (table 1). The increase was more dramatic
for exponential weights than for cumulative weights.
Notably, the exponential weights were more variable than
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Table 2

Linkage and Association Sample Sizes Required
to Obtain Shifts of and ,m p 2.0 m p 4.5l l

Respectively, for Various Genetic Models

r

MODEL

nl nak f D l

.05 .01 1.5 .05 1.01 67,219 2,278

.05 .01 2 .09 1.04 5,664 641

.05 .01 3 .18 1.15 544 225

.05 .2 1.5 .04 1.01 207,635 2,448

.05 .2 2 .07 1.03 21,596 750

.05 .2 3 .11 1.07 2,617 304

.2 .01 1.5 .18 1.03 8,067 659

.2 .01 2 .33 1.11 612 167

.2 .01 3 .56 1.32 97 63

.2 .2 1.5 .14 1.02 22,385 700

.2 .2 2 .25 1.08 2,096 193

.2 .2 3 .41 1.21 418 84

.5 .01 1.5 .4 1.04 5,046 491

.5 .01 2 .66 1.11 474 150

.5 .01 3 .99 1.25 145 67

.5 .2 1.5 .32 1.03 12,486 509

.5 .2 2 .54 1.09 1,447 169

.5 .2 3 .83 1.22 559 87

the cumulative weights, which suggests the cumulative
weights could be a better choice.

Relating Genetic Models to Statistical Models

The intensity of the signals from linkage and associa-
tion studies are determined by the underlying genetic
model and the sample size. With some statistical ma-
nipulation, the expected signal resulting from the genetic
model can be parameterized by the statistical shift pa-
rameters and used in our simulations. In this sec-m ml a

tion, we develop a mapping between the statistical pa-
rameters and the genetic models. This mapping should
be useful for evaluating the results of our simulations
and for the design of whole-genome association studies,
especially realistic evaluation of their power.

For a given sample size and genetic model, we can
compute the resulting shift of the linkage and/or asso-
ciation test statistic by making use of two statistical re-
lationships. For simplicity of exposition, we assume that
an observation in a linkage study is a fully informative
affected sib pair (ASP). In an association study, an ob-
servation is a single case and a single control. For a par-
ticular genetic model and study design, a certain amount
of information is expected per observation, and the sum
of this information over observations is called the “non-
centrality parameter.” This quantity determines the shift
parameter. Next, a regression model can summarize the
functional relationship between a genetic model and the
sample size required to achieve a particular size of shift
for a particular study design.

We investigate a variety of genetic models that assume
a prevalence of k (0.01–0.03), a disease variant that oc-
curs in the population with frequency r (0.05–0.5), and
an additive penetrance model. Models vary in the levels
of genetic effect assumed. To obtain small-to-moderate
genetic effects, we consider models with an odds ratio
(f) of 1.5–3.0. This quantity indexes the genetic effect
of the disease variant independent of the prevalence
k; however, as with all measures of genetic impact, the
strength of a given value can be interpreted only within
the context of the other parameters in the genetic model.
Some measures of genetic effect are more useful for link-
age analysis, whereas others are more useful for asso-
ciation analysis. For this reason, we also report the risk
to relatives (l) (Risch 1990) and the attributable fraction
(D) (Pfeiffer and Gail 2003). The latter, which is equiv-
alent to Levin’s population-attributable risk, is defined
to be one minus the ratio of the probability of affection,
given that an individual has no copies of the detrimental
allele, over the prevalence.

To see how the apparent genetic effect varies with the
measure, consider two models, each with andk p 0.01

. If the causal variant is uncommon ( ),f p 2 r p .05
and , whereas, if the causal variantD p 9% l p 1.04

is common ( ), the apparent genetic effect is muchr p .5
stronger: and . From D and l, weD p 66% l p 1.11
see that, when r is small, it will be difficult to detect the
signal if , because most of the risk will not be at-f � 2
tributable to the locus.

The number of ASPs ( ) necessary to achieve a signalnl

of size in a linkage analysis with fully informa-m p 2.0l

tive markers is given for a variety of genetic models (table
2). For each model, the corresponding number of cases
( ) necessary to achieve a signal of size in an m p 4.5a a

case-control association study with equal numbers of
cases and controls is given, with the assumption that the
disease variant is measured. Notice that some genetic
models are favorable to association studies, whereas oth-
ers are favorable to linkage studies. For instance, when

, , and , the required sample sizek p 0.01 f p 2 r p 0.05
for a linkage study is large ( ), yet, for an as-n p 5,664l

sociation study, it is tenfold smaller ( ).n p 648a

Table 2 shows the range of the genetic model space
we explored, but only a fraction of the specific settings.
To obtain estimates of the sample sizes required for link-
age and association studies for other genetic models, we
provide a regression model that is a function of (r,k,f).
See appendix B for details. For both regression models,
the fit was excellent ( ).2R 1 99%

For a given genetic model defined by (r,k,f), let Nl

and denote the sample size required to obtain shiftNa

parameters of and , respectively. Wem p 2.0 m p 4.5l a

chose these shift parameters for illustrative purposes only.
It is straightforward to extend to other desired shift pa-
rameters. If is the sample size necessary to obtain anc
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linkage shift of size c, then to obtain a shift of size b,
we require a sample size of

2b
n p n .b c ( )c

From the regression model and for , is wellc p 2.0 nc

approximated by . Substituting this in the formulaNl

yields the desired sample-size estimate for the given ge-
netic model.

For an association study, it is quite likely that the causal
SNP is unmeasured. Let denote the Pearson squared2r
correlation between the allele count at the causal SNP
and the most highly correlated SNP that is measured.
As in the linkage scenario, it follows that if is thenc

sample size necessary to obtain an association shift of
size c when the causal SNP is measured, then to obtain
a shift of size b with an unmeasured causal SNP, we
require a sample size of

2b 1
n p n .b c ( ) ( )2c r

These formulas may be used in reverse as well. Suppose
sample sizes are predetermined. Then, for a plausible
genetic model, one can compute the expected shift, b,
in the formula above. See appendix B for detailed nu-
merical examples of these calculations.

Discussion

When planning a whole-genome study to discover genes
associated with a complex phenotype, a host of issues
arise, many of which were discussed in a recent review
by Thomas et al. (2005). To detect association via LD
in a typical population requires a marker density on the
order of 1 every 6 kb, which results in ∼500,000 SNP
markers. Many investigators have recommended a two-
stage association analysis to circumvent the challenges
of multiple testing (e.g., Sobell et al. [1993] and Sata-
gopan and Elston [2003]). The concept of this study
design is to perform an analysis on an initial sample of
subjects for a dense grid of markers and then to follow
up with an independent sample, tested for only the mark-
ers yielding “promising” results in the first stage. Al-
though this approach is helpful, testing such a large num-
ber of hypotheses makes it difficult to detect meaningful
associations. In the present study, we propose a novel
approach for improving the power of a whole-genome
association study that is applicable to one- or two-stage
designs.

Investigators typically favor certain regions of the ge-
nome on the basis of the results of prior investigations,
such as linkage analysis. We propose using this informa-
tion in the form of weights for the P values. Specifically,

we divide P values by weights and then apply the tra-
ditional FDR procedure to the weighted P values. We
investigate how weights might sensibly be chosen on the
basis of a prior linkage study. Our investigations reveal
that if the prior weights are informative, the procedure
improves power considerably. Remarkably, even if the
weights were uninformative, the loss in power is small.

Theory imposes few constraints on the weights beyond
a basic conservation principle: the weights must average
to 1. There remain many open questions about how to
best incorporate information from multiple prior linkage
studies. Presumably, the basic principles of meta-analy-
ses can be applied to combine information into a single,
so-called meta-linkage trace. Another obvious candidate
for weights is “gene-based” and involves up-weighting
regions—including coding, splice-site, and regulatory re-
gions—and conserved intronic regions (see Thomas et
al. 2005). Nevertheless, although many different weight-
ing schemes are permissible in principle, searching to
find the weights that give the desired significant results
is not acceptable. For this reason, we give some sug-
gested weighting schemes and presume that any other
choice of weights would require scientific motivation be-
fore it would be considered valid.

From simulations, it is clear that a few dramatic weights
are ideal if the prior data are highly informative. Other-
wise, modest weights provide a more robust choice. For
linkage-based weights, such as the exponential weights,
it might be ideal to have a way of choosing the constant
B to maximize the power of the analysis. A data-driven
option to achieve this goal is to select the B that max-
imizes the number of discoveries for a particular genome
scan; call it . Simulations reveal that is a well-D(B) D(B)
behaved step function. In most simulations, it starts low,
steps up quickly to a maximum value, stabilizes for a
broad range of choices, and then declines as B gets larger.
The exception is when the linkage trace is uninformative.
In this case, the B that maximizes typically occursD(B)
for a value near zero. Although this empirical approach
is appealing, it does have one notable drawback. Because
the rate of false discoveries is controlled in expectation
at level a for each B, maximizing the number of dis-
coveries over B leads to an excess of false discoveries.
Our simulations suggest, however, that this approach
results in a minor increase in FDR of ∼0.04 over a p

. This increased error rate was often accompanied0.05
by a more-than-compensatory increase in power (results
not shown). This promising idea requires further study.
Already, it can provide a useful tool for selecting genes
meriting further investigation.

In consideration of the use of prior information to im-
prove testing, a Bayesian approach comes to mind. In-
deed, the Bayesian FDR method given by Genovese and
Wasserman (2003) can easily be extended to incorporate
distinct priors for each hypothesis. Storey (2002) and
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Efron et al. (2001) have given Bayesian interpretations
of FDR. Here, we have proposed using P value weighting
as a frequentist method for including prior information
about the hypothesis, while leaving the false discovery
rate unchanged. The relationship between weighted FDR
and a fully Bayesian procedure for evaluating linkage and
association is not obvious to us but could be an inter-
esting area of inquiry.

Risch and Merikangas (1996) compared the power of
case-control association designs to linkage studies that
used ASPs. For realistic sample sizes, they showed that
some genetic models were much more likely to produce
substantial association statistics than they were to pro-
duce substantial linkage statistics. We revisited this topic
and calculated the sample size required to obtain useful
prior information from a linkage study for the space of
genetic models likely to underlie complex phenotypes
(table 2). This inquiry reveals that, among genetic mod-
els that are seemingly equal in genetic information, as
measured in terms of roughly equal sample sizes required
to detect an association signal, some are much more in-
formative for linkage than others. This observation re-
inforces the fact that loci “detectable” by linkage designs
are not always the same as those detectable by associa-
tion, and vice versa. Nonetheless, by exploring the power
of the weighted procedures for a wide range of scenarios,
we show that weighted FDR can improve power for
scenarios quite likely to be relevant for some complex
diseases/phenotypes. A caveat is also worth noting: our
simulations assume the loci important for generating li-
ability in multiplex families and those generating liability
in population-based samples overlap. It is theoretically
possible that there is little overlap for these two sets of
loci; in that case, using linkage information to weight
association statistics will not improve power as substan-
tially as our results suggest.

Even when a dense set of markers has been genotyped,
the choice of tag SNPs is critical to ensure that signals
are detectable indirectly via LD (Rinaldo et al. 2005).
The best tag SNPs to pick depends somewhat on the
nature of the statistical analysis planned (Roeder et al.
2005). In our simulations, we ignored the LD structure
in the genome and assumed that the association test
statistics were independent. In practice, tests will be cor-
related, but, for well-selected tag SNPs, the correlation
will be modest. Fortunately, for the type of correlation
anticipated, FDR procedures maintain their validity (Dev-
lin et al. 2003a; Storey et al. 2004).

For ease of exposition, we assumed that the P values
were derived from normally distributed association tests.
Because of a well-known relationship between the square
of a normal statistic and the test, the conclusions we2x

draw are directly applicable to 1-df test of associa-2x

tion between SNP and phenotype. Moreover, because
the FDR methods are P value based, any tests, including

those based on haplotypes, are directly applicable to our
weighted procedures. Using P values has the advantage
of placing all tests, no matter the degree of freedom, on
a common scale.

In closing, we note that technology has a tremen-
dous effect on scientific inquiry, not all of it positive. In
the workshop on genomewide association scans, Alice
Whittemore asked “Is the technology driving the sci-
ence?” (Thomas et al. 2005, p. 342). In the case of ge-
nomewide association studies, it is important to recall
that just because we can afford to measure hundreds
of thousands of SNPs does not mean we should let this
additional data diminish our chances of detecting asso-
ciation signals in a targeted set of genes. The methods
we propose allow scientific intuition to coexist more com-
fortably with emerging technology. Yes, we can measure
more, but we can also use our scientific prior insights
to target promising regions through the use of weights.
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Appendix A

A linkage scan with 10,000 SNPs takes considerable
computer time to simulate; on a 1.4-GHz Opteron pro-
cessor, simulation of a single linkage scan required 25
min. To estimate power, thousands of simulations are
needed for each experimental condition investigated.
Thus, direct simulation and analysis of 10,000 SNP link-
age scans are infeasible, even on a cluster of processors.

In our simulations, we required an accurate approxi-
mation of the underlying time-series process. Conse-
quently, we researched the appropriateness of an ARMA
process to model the autocorrelation structure of linkage
traces for 10,000 scans. For this purpose, we simulated
and analyzed two data sets under the null hypothesis of
no linkage between disease and markers. The two data
sets comprised 400 ASPs. Each family has genotyped par-
ents and missing genotypes at 7% of the loci overall.
The data sets were simulated using SIMULATE (Ter-
williger et al. 1993), and the linkage statistics were out-
put every 1/3 cM, by use of Allegro (Gudbjartsson et al.
2000), with an exponential model option. We used the
ARMA function in the R software (Venables and Ripley
2002) to fit two data sets to each of 16 models in the
family of ARMA models, with AR and MA orders be-
tween 0 and 3. By using Akaike’s information criterion
(AIC), the best fits were obtained using ARMA(2,1) and
ARMA(3,1) models. Time-series diagnoses showed that
these models provided a good fit to the autocorrelation
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Table B1

Coefficients for Log Linear Models to Predict
Required Sample Size to Obtain a Given Signal
for Linkage and Association

TERM

COEFFICIENT

Linkage Association

Intercept 114.28 54.78
k �8.01 1.16
r �27.56 �28.39
f 116.74 50.85
�r 48.22 32.83
�f �185.17 �81.81
�k �.76 �2.02
k:r �.64 6.18
k:f �3.93 0
k:�r �2.80 �5.23
k:�f 14.52 0
k:�k 4.23 0
r:f �23.68 �21.73
r:�r �10.81 �11.53
r:�f 76.60 70.48
r:�k .58 �3.67
f:�r 34.59 21.53
f:�f �25.63 �10.96

:� �r k 0 2.92
:� �r f �103.22 �68.44
:� �f k .93 1.30

NOTE.—The achieved signals are andm p 2l

. Terms such as k:r indicate interactions.m p 4.5a

function for statistics from map locations separated by
!50–60 cM. Whereas the fit was not as good for statistics
separated by 160 cM, both the empirical and fitted auto-
correlations were close to zero at that distance and thus
had little practical impact.

Appendix B

After computing ( ) for a broad range of values ofn nl a

k,r,f, we fit a generalized linear model with the log link
to predict ( ) from k,r,f, the square root of each ofn nl a

these terms, and all pairwise interactions. The best mod-
els among this class were chosen using the stepwise AIC
option. The resulting models, which had 2R p 99.9%
for linkage and 99.4% for association, are presented in
table B1. These are the models to obtain (m p 2 m pl a

) for a linkage (association) study.4.5
For instance, if the genetic model is specified by

, , and , we can use table B1 tor p 0.25 k p 0.05 f p 3
compute the number of sib pairs necessary to obtain an
expected shift of in a linkage study. Simply cal-m p 2l

culate , where x is the vector (1,k,r,f,…,′n p exp {x g }l l

and is the vector of linkage coefficients from� �f # k) gl

table B1. Performing this calculation for the designated
model, we find that ∼125 sib pairs will be required. The
numbers reported in table 2 were obtained for a sub-
set of genetic models with use of this formula, but with

greater numerical precision in the coefficients. We can
also compute the number of sib pairs necessary to ob-
tain a shift of size with use of the adjustmentb ( 2
formula presented in the “Results” section. For example,
if , we calculate 2 2b p 3 n p n (b/c) p 125(3/2) pb c

.281
To determine the sample size necessary to obtain a

shift of size in an association study, we calcu-m p 4.5a

late , where is the vector of association′n p exp {x g } ga a a

coefficients from table B1. For this example, if the causal
SNP is measured, then ∼62 cases and controls will be
required to obtain the desired results. On the other hand,
if the causal SNP had not been measured but has max-
imum correlation with a measured SNP, thenr p 0.8
an additional 35 cases and controls would be required
to obtain the same expected shift. Finally, if we have
200 cases and controls available, we expect a shift of

. As indicated in table 2,�6.5 p 4.5 # 200/(62 � 35)
these values are highly dependent on the assumed genetic
model.

Web Resource
The URL for software presented herein is as follows:

University of Pittsburgh Medical Center, http://wpicr.wpic.pitt.edu/
wpiccompgen/
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